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Abstract— The new Scorpius linear induction electron 

accelerator is under development for multi-pulse flash 
radiography of large, explosively-driven hydrodynamic 
experiments. Beam physics from the cathode to the target was 
examined with computer simulations, including envelope, ray-
trace, and particle-in cell (PIC) codes. Beam instabilities 
investigated included beam breakup (BBU), image displacement, 
diocotron, parametric envelope, ion hose, and the resistive wall 
instability. Beam corkscrew motion and emittance growth from 
beam mismatch were also studied. The results of these 
simulations is documented in a series of reports. In this report the 
computer codes and physical models used for these simulations 
are described. The conclusion of this study is that Scorpius will 
produce and accelerate a beam with radiographic quality 
equivalent to the present accelerators at Los Alamos National 
Laboratory if the same engineering standards and construction 
details are upheld.  
 

Index Terms—Flash radiography, linear induction accelerator, 
electron beam instabilities 
 

I. INTRODUCTION 
LASH radiography of large explosively-driven 

hydrodynamic experiments is a time proven diagnostic in 
use world-wide  [1, 2, 3] At Los Alamos National Laboratory 
two electron linear induction accelerators (LIAs) at the Dual-
Axis Radiography for Hydrodynamic Test (DARHT) facility 
have provided bremsstrahlung radiation pulses for this purpose 
for more than a decade.  

A new LIA called Scorpius is under development for flash 
radiography at the National Nuclear Security Site (NNSS) in 
Nevada [4]. Scorpius will use 102 solid-state pulsed-power 
(SSPP) driven 200-kV cells to accelerate a 1.4-kA electron 
beam from 2 MeV to 224 MeV in order to meet the following 
radiography requirements [5]: 
 

• Four radiographic pulses within a 3-µs window  
• Pulse length variable from less than 50 ns to 100 ns. 
• Variable pulse spacing 
• Capable of two pulses spaced within 200-ns center-to-

center  
• Radiographic resolution at least 0.8 lp/mm  
. 
The high-quality DARHT-I electron beam produces 

bremsstrahlung radiation source spots exceeding all 

 
 

anticipated requirements for hydrodynamic testing. Therefore, 
a new machine reproducing DARHT-I beam quality for multi-
pulse radiography would satisfy mission requirements, 
However, there are significant differences between Scorpius 
and DARHT-I. For example, because of the lower injection 
energy and accelerating-gap voltages, and higher endpoint 
energy, there are 60% more cells in the Scorpius LIA that in 
DARHT-I, and the LIA is almost three times longer. 
Moreover, Scorpius will produce and accelerate four pulses, 
each of which is equivalent to the single DARHT-I pulse.  
These differences have a profound influence on beam stability.  

Because of these differences, and the novelty of the 
Scorpius pulsed-power, an assessment of beam dynamic 
concerns is called for. These concerns include beam transport, 
motion, stability, and emittance, each of which was 
investigated in simulations that covered the entire birth-to-
death lifetime of the beam; that is, from cathode to target 
(C2T).  

 For this assessment, we relied on analytic theory, 
simulation codes, and experimental data from the DARHT 
LIAs. The results of this assessment is the subject of a series 
of technical notes, each dealing with a particular aspect of 
beam quality. This, the first of these notes, presents an 
overview of the computer codes and physical models that we 
used, first for an early version of Scorpius based on traditional 
pulsed power [6], more recently for the present solid-state 
pulsed power (SSPP) design.  

II. SIMULATION CODES 
Although a complete time-resolved C2T simulation can be 

performed with one of our envelope codes (LAMDA), we use 
several beam simulation codes to help us better understand 
beam dynamics in the DARHT LIAs. Most notably; 

  
• Beam production in high-power diodes has been 

studied using the TRAK orbit-tracking and LSP 
particle-in-cell (PIC) codes. 

• Beam transport and acceleration through the LIA has 
been studied using the XTR and LAMDA envelope 
and centroid codes, and the LSP PIC code, 

• Coasting-beam transport from the LIA to the target 
has been studied using XTR, LAMDA, and LSP. 

 
These are the four principal codes used to assess beam 
dynamics concerns, and to evaluate mitigating methods for 
Scorpius. 
 

Cathode to Target Simulations for Scorpius:  
I. Simulation Codes and Models 

Carl Ekdahl 
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A. TRAK 
 
TRAK is a finite-element ray-tracing code [7, 8, 9] using 

external fields generated by accompanying finite element 
electromagnetic codes [10, 11]. The program applies high-
accuracy finite-element techniques to simulate steady-state 
beams in 2D (cylindrical) electric and magnetic fields, 
including effects of beam-generated electric and magnetic 
fields, and self-consistent space-charge-limited emission, 

TRAK has been used to provide initial conditions for 
envelope code simulations of the DARHT beams, and has also 
been used as a diode design tool. For example, we have no 
beam measurements at the exit of DARHT-II diode, so we rely 
on predictions of TRAK and LSP to provide initial conditions 
for envelope codes. Fig. 1illustrates how TRAK is used to 
provide the beam parameters at the diode exit, which serve as 
initial conditions for the beam simulations through the LIA. 
The location for hand-off to other codes was chosen to be far 
enough into the anode beam pipe that the applied diode 
electric field was reduced to less than 1% of the beam space-
charge field, so it would have no influence on the transport 
simulations. 

 
 

Fig. 1: TRAK simulation of beam produced by the DARHT-II hot 
dispenser cathode diode. Equipotentials for the applied voltage are 
shown.  The hand-off location shown  is where beam current, energy, 
emittance, size, and convergence were extracted for use as initial 
conditions for further simulations with other codes. This hand-off 
location was chosen far enough into the anode pipe that the applied 
electric field was less than 1%of the beam space-charge field. 

An example of how TRAK has been used to guide design of 
new accelerators, such as Scorpius, is provided by the next 
illustration. Early on in the design of Scorpius there was a 
question of whether the beam produced by a 5-inch diameter 
cathode could be focused into a 6-iinch diameter beam pipe, 
which is significantly smaller than the 14-inch diameter 
DARHT-II pipe. A quick simulation by TRAK of a simple 
diode geometry with Pierce focusing electrodes laid this 
concern to rest in short order (Fig. 2). 

   
 

 
Fig. 2: hypothetical 3-MeV, 2-kA beam produced by a 5-inch 
diameter cathode and focused into a 6-inch diameter beam pipe. 
Equipotentials shown in this figure include the beam space charge to 
illustrate the effect of the Pierce focusing geometry on the total field.  

More recently, TRAK has been used to design the Scorpius 
2.0 MeV, 1.4-kA injector [12], and a 3-D version of the code 
(OmniTRAK) has been used to simulate the effects of cathode 
misalignment [13]. (These reports are also archived as 
Scorpius Technical Notes 027 and 036.)  A recent TRAK 
simulation of the diode produced beam parameters at 1-m 
from the cathode that have been used for the cathode to target 
(C2T) simulations reported here (Fig. 3). 

 

 
Fig. 3: TRAK simulation of 1:1 push-pull diode producing a2.0-MeV, 
1.45-kA beam for hand-off to other codes at 100 cm from the cathode. 
At the hand-off position the beam envelope radius is 5.011 cm, with a 
35.24 mrad convergence and a 204-mm-mrad normalized 4-rms 
emittance.  

 
 

B. XTR 
 
XTR is a static envelope equation solver, and also a static 

solver of the beam centroid position. It is our primary tool for 
tuning the DARHT LIAs, as well as designing tunes for 
advanced LIAs such as Scorpius. 

 
1) Beam Envelope 
 

In XTR the radius of a uniform density beam is calculated 
from an envelope equation [14, 15, 16]. In the DARHT 
accelerators the beam is born at the cathode with no kinetic 
angular momentum. Moreover, a reverse polarity solenoid is 
used to cancel out the magnetic flux through the cathode so 
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that the canonical angular momentum of the beam is zero. The 
envelope equation solved by XTR for such a beam is [17] 

 

 
2 2 2

2
2 2 2 2 3

1 1
2

d r d dr d Kr k r
dz dz rdz dz rβ
γ γ ε

β γ β γ
+ + + = +  .     (1) 

 
It can be shown that this same equation holds true for any 

axisymmetric distribution undergoing self-similar current-
distribution variations  [14], where the radius of the equivalent 
uniform beam is related to the rms radius of the actual 

distribution by 2 rmsr R=  Here, /ev cβ = , and 21/ 1γ β= −
, are the usual relativistic parameters. The beam electron 
kinetic energy is ( ) 21 eKE m cγ= − . Focusing by an axial 
magnetic field is characterized by the betatron wavenumber, 
which is  

       -1

0

2 (kG) cm
3.4

z z

A

B Bk
Iβ

π
µ βγ

= ≈   ,           (2) 

 
where 17.08 kAAI β γ= , and zB is the axial magnetic field on 
axis. Corrections to magnetic focusing due to beam 
diamagnetism are calculated for a rigid rotor beam. 
 The two terms on the left involving derivatives of beam 
energy γ are responsible for focusing the beam at the 
accelerating gaps. In XTR the gaps are approximated as thin 
Einzel lenses that increment the energy and focus the beam. In 
between gaps these terms give the envelope variation due to 
the beam space-charge potential depression. In XTR the 
potential depression is approximated by that for a uniform 
current density [15]  

 

 ( )30
1 2ln /b

spd
I

b rϕ
β

≈ +    (3) 

 
where b is the radius of the beam pipe.  

 Defocusing by the beam space charge is given by the first 
term on the right hand side of Eq. (1), and is characterized by 
the generalized perveance 2 22 /b AK I Iβ γ=  .  

Defocusing by beam transverse temperature is characterized 
by the beam emittance in the last term on the right hand side 
of the equation.  The emittance that appears in Eq. (1) is  
 

 ( ) 2 222 22 / /r r v c rr rv cθ θε β β ′ ′= + − −
 

,(4) 

 
which is related to the normalized emittance by  nε βγε= . 

In a solenoidal focusing system as in our LIAs the canonical 
angular momentum is conserved (Busch’s theorem). The 
DARHT beams are born at the cathode with no mechanical 
angular momentum. Furthermore, the field angular momentum 
is zeroed there by using an opposite polarity solenoid to null 
the magnetic flux linking the cathode. Therefore, in the axial 
field of the solenoidal transport, the beam must rotate to 
conserve momentum, and for a uniform current distribution 

the beam rotates rigidly.  For a rigidly rotating beam, the terms 
involving vθ  cancel, leaving simply 
 

 22 22n r r rrε βγ ′ ′= −    . (5) 

In the azimuthal symmetry assumed in deriving Eq. (1), 
2 2 2 22r x y x= + =  with similar expressions for the 

beam convergence and cross terms, so Eq. (5) reduces to 
 

 22 24n x x xxε βγ ′ ′= −  , (6) 

 
which is the normalized Lapostolle “4-rms” emittance [18]. 
Differentiation of any of these equivalent expressions for the 
normalized 4-rms emittance shows that it is invariant in a 
system in which the forces on the beam envelope are constant 
or linear with radius at most. Even though solenoidal focusing 
fields and the space-charge field are generally nonlinear, the 
linear approximation is used for both.  
 The numerical method for solution is based on matrix optics 
[19] over incremental distances dz short enough that kβ can be 
assumed constant and the phase advance given by k dzβ . The 
interpolation scheme for advancing the solutions ( ), ( )r z r z′
accounts for the diamagnetic and space-charge self-field 
corrections to the external solenoidal focusing, and the beam 
energy is incremented at the gaps. 

Fig. 4 and Fig. 5 show the nominal tunes and beam 
envelope radii for the two DARHT accelerators as calculated 
with XTR. 

  

 
Fig. 4: XTR simulation of beam transport through the nominal tune 
used on the short-pulse DARHT-I LIA. Green Curve: Magnetic field 
on axis produced by focusing solenoids. Red Curve: Beam envelope 
radius. Broken Blue Lines: Positions of BPMs. Cyan Asterisks 250-
kV accelerating gaps. : 
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Fig. 5: XTR simulation of beam transport through the nominal tune 
used on the long-pulse DARHT-II LIA. Green Curve: Magnetic field 
on axis produced by focusing solenoids. Red Curve: Beam envelope 
radius. Broken Blue Lines: Positions of BPMs. Cyan Asterisks 250-
kV accelerating gaps. Cyan Line: Beam pipe wall and apertures: 

Even though the final energy of the DARHT-I beam is 
greater than the DARHT-II beam (19.8 MeV vs 16.5MeV), 
the LIA is shorter because the injected energy is greater (3.8 
MeV vs 2.2 MeV), the gap voltage is greater (250-kV vs ~190 
kV), less Volt-sec of magnetic material is needed to support 
the shorter pulses (<100 ns vs >1600 ns).. 

XTR has been used to design tunes for beam transport 
through new accelerators. For example, Fig. 6 shows the XTR 
simulation results for a beam produced by the Scorpius 
injector and accelerated through the 12 cells planned for the 
integrated test stand (ITS). The beam was launched with 
parameters given in Fig. 3 at the hand-off position 100 cm 
from the cathode, transported through the anode beam-pipe 
using solenoidal fields, and then accelerated through the ITS 
cells with solenoidal transport fields low enough that the beam 
breakup instability gain could be measured. 

 

 
Fig. 6: XTR simulation of beam transport through the injector anode 
pipe and the 12-cell ITS, where the 1.45-kA, 2.0-MeV injected beam 
is accelerated to 4.4 MeV. 

 
2) Beam Centroid Position 
 

XTR can also calculate the position of the beam centroid as 
it responds to externally impressed solenoidal and dipole 
magnetic fields.  The equations solved by XTR for the beam 

centroid positions ( ), ( )x yC z C z are 

 
2

2
yx

y y

dC dkd C
k C k

dz dzdz
β

β= + −  (7) 

and 
 

 
2

2
y x

x x

d C dkdC
k C k

dz dzdz
β

β= − − +  (8) 

 
where ( ) /1.7 cmx xk B kG βγ= etc, and includes dipole fields 
resulting from offset or tilted solenoids, as well as fields from 
steering dipoles. The second term in the right hand side of 
these equations is from the linear field approximation that 
retains only the first-order term of a Taylor series expansion of 
the solenoidal field that satisfies 0∇ =B ; e.g., 

( / 2) /x zB x dB dz= − etc., where zB is the field on the axis. In 
XTR the beam energy γ used in these centroid equations does 
not include space-charge depression, in order to agree with 
experiments [20]. 

An example of XTR beam centroid calculations is the 
simulation of beam motion through DARHT-II. Uncorrected 
beam motion at the exit of this LIA was dominated by an 
energy-dependent sweep. Since this would result in wandering 
of the radiographic source spots by more than their size, it had 
to be corrected, and XTR simulations provided guidance for 
the needed steering corrections. A major source of sweep was 
the folded current path in the injector. The diode beam source 
is at right angles to the coaxial current feed from the Marx 
generator [21, 22, 23, 24, 25, 26]. This asymmetry produces a 
weak transverse field in the diode anode-cathode gap that 
deflects the beam upward. Because of the defection the beam 
enters the solenoidal magnetic focusing field with an upward 
tilt, which causes the beam to follow a helical trajectory. This 
helix is initially large, and if uncorrected it remains large 
through the accelerator, as shown by simulations of the beam 
centroid position in Fig. 7. These simulations used measured 
beam centroid positions for initial conditions, magnetic field 
models fit to measurements for solenoidal and dipole fields, 
and measured solenoid misalignments for calculation of the 
resulting dipole fields. The predicted helical trajectory is 
stationary only if the beam initial energy and the cell 
accelerating potentials are constant in time. If either of these 
vary in time, the helix phase and gyro radius also vary at the 
LIA exit, causing the beam centroid position to sweep in time, 
as observed in experimental measurements.  
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Fig. 7: Simulation of the beam centroid position in x (Cx in red) and 
y (Cy in green). For this simulation the initial offset was uncorrected, 
and the resulting large helical trajectory extended through the 
accelerator. In this simulation the helical trajectory is stationary in 
time, because there is no time-variation of the initial energy or 
accelerating potentials. 

Obviously, the first step toward reducing beam motion at 
the accelerator exit would be to minimize the size of the 
helical trajectory caused by offset injection. Therefore, we 
corrected the offset injection by centering the beam using 
dipoles in the six injector cells. Fig. 8 is the result of an XTR 
simulation illustrating how this works by using two pairs of 
dipoles to correct the helical trajectory shown in Fig. 7. 
Experimental results were equally notable [24, 26]. 

 

 
Fig. 8: Simulation of the beam centroid position in x (Cx in red) and 
y (Cy in green). For this simulation the initial offset and resulting 
large helical motion has been corrected using 2 dipole pairs in the 
injector cells to center the beam (note trajectory between 300 cm and 
800 cm). The residual helical motion in the main LIA is the result of 
dipole created by cell misalignments (measured misalignment values 
were used for this simulation). 

 XTR is written in the IDL programming language, so it is 
easily customized by the user. Versions of the code exist that 
include features such as ad hoc emittance growth, exponential 
BBU growth, etc.    

C. LAMDA 
 
LAMDA is an acronym for Linear Accelerator Model for 

DARHT. It is a time-resolved envelope and centroid solver, 
and it also has algorithms for calculating problematic beam 
instabilities. Moreover, LAMDA can simulate elliptical beams 
and quadrupole magnet focusing, which is important for 
tuning the downstream transport on DARHT-II. 

LAMDA simulates time-resolved beam dynamics by 
subdividing the beam into many disks as shown in Fig. 9 [27, 
28]. For a relativistic beam it is assumed that there is no 
interaction between the beam disks. The envelope radius for 
each disk is found from the envelope equation and the position 
of its center is calculated from the external forces.   
 

 
Fig. 9: Articulated beam model used by LAMDA to simulate time 
resolved response of the beam envelope and centroid position to 
external forces. 

Focusing is calculated from files of axial magnetic field on 
axis and thin Einzel lens approximations for the accelerating 
gaps. For off axis fields, LAMDA uses the linear field 
approximation, which retains only the first order terms of a 
divergence-free Taylor expansion. Since normalized 
Lapostolle emittance is invariant for linear forces on the beam, 
it is held constant in LAMDA.  

LAMDA includes models and algorithms for simulating 
many important beam instabilities: 

 
• Beam breakup (BBU) 
• Image displacement (IDI)  
• Resistive wall 
• Ion Hose 

 
In addition, LAMDA includes calculations of solenoid 

misalignment dipoles enabling time-resolved simulations of 
the beam corkscrew motion that results from beam energy 
variations [29]. 

 
1) Beam Envelope 
 

LAMDA uses an improved envelope equation that accounts  
for self-field terms [30] that are similar to those in XTR. 
These self-field terms include effects due to space-charge 
depression of the beam energy, diamagnetism from beam 
rotation, and the axial variation of the beam envelope. It is 
assumed that the current density is uniform, the beam rotates 
rigidly, and the divergence is radially linear. 

A 4th order Runge-Kutta algorithm is used to integrate the 
equations for the beam envelope radius. Accelerating gaps are 
treated using either an advanced thin gap model [31], or by 
integrating through a user-supplied electric field map. In the 
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thin-gap treatment, the beam energy is stepped by a constant 
over the pulse, varied in time per a user suppled file, or 
calculated from a circuit model. 
 
2) Beam Centroid Position 
 

To model the trajectory of the beam centroid, LAMDA 
solves the Lorentz force equation for each disk  

 

,

,

yx z
x y z

y xz
y x z

vdp ve E B B
dt c c

dp vve E B B
dt c c

 
= − + 

 

 = + − 
 

              (9) 

 
and transforms the independent variable from time (t) to 
position (z) in the lab frame 

 

2
2

2
2

( ) ,

( ) ,

x y z

y x z

ex x E B y B
mc

ey y E B x B
mc

γβ γ β β

γβ γ β β

′′ ′ ′ ′= − + − +

′′ ′ ′ ′= − + + −
    (10) 

where the prime symbol denotes /d dz  , /zv cβ =  , and 
21 1/γ β= −  . The electromagnetic fields in these equations 

include all external fields (solenoids and gaps) plus the fields 
of the beam image in the beam pipe, including any fields 
responsible for instabilities.  The full set of differential 
equations to be solved for the beam centroid motion are the 
equations for the spatial motion of each beam disk along the 
accelerator, and the equations for the temporal variation of the 
voltage at the gaps. A 4th order Runge-Kutta algorithm is also 
used to integrate the equations for the beam centroid. 

Beam centroid motion simulations with LAMDA have been 
extensively used to investigate beam corkscrew motion [29]. 
They have been especially useful for long LIAs with phase 
advance so great that linear approximations for amplitude are 
invalid, because the growth is saturated. This saturation effect 
limits the growth of corkscrew in long LIAs, so the LAMDA 
studies have provided noteworthy guidance for the design of 
Scorpius [6],  An example is illustrated in Fig. 10, which 
shows the beam centroid motion at the exit of an early version 
of Scorpius that used 72 gaps with each providing 250-kV of 
accelerating potential. This corkscrew motion resulted from a 
2.4% rms variation of gap voltages interacting with the dipoles 
caused by random solenoid offsets, which were normally 
distributed with 0.29-mm rms misalignment.  

As seen from Fig. 10, the rms amplitude is limited by the 
extent of the magnetic-flux enclosing cyclotron motion for a 
total phase advance exceeding 2π , although for much less 
advance the amplitude could be linearly approximated by a 
short arc length. These LAMDA corkscrew simulations have 
helped quantify this saturation effect for long accelerators like 
DARHT and Scorpius. They have also helped evaluate the use 
of steering dipoles to significantly reduce the corkscrew 
amplitude via the “tuning-V” operational procedure [26, 32]. 

 
Fig. 10: LAMDA simulation of beam-motion trajectory at the 
Scorpius LIA exit. Individual points are at 1-ns intervals, and 
represents the position of a single disk of the articulated beam 
model. This is the result of applying the voltage waveform with 
2.4% rms fluctuations, and using the transverse fields calculated 
for 0.29-mm rms offsets of the solenoids. 

 
3) BBU Algorithm 
 

The LAMDA BBU algorithm is based on Fourier transform 
methods introduced in seminal BBU publications [33] . 

The interaction of the disk with the dipole TM1n0 fields at 
the gap is calculated using the narrow gap approximation. 
That is, the beam position is assumed be invariant as the beam 
crosses the narrow gap, but a transverse impulse is applied. 
LAMDA performs separate calculations of the transverse 
impulse in each of two orthogonal directions. A disk which 
arrives at a gap at time t (measured back from the head of the 
beam) receives a transverse impulse given by 

 

 
( ) ( ) ( )

( ) ( )

0

0

( ) tx
x

t

x

p t
t cd

mc

t f cd

τ ι τ ξ τ τ

τ τ τ

∆
= −

≡ −

∫

∫

Z

Z
 (11) 

 
and similarly for ( )yp t∆ . Here, ( )tξ is the disk displacement 
from the magnetic centerline in the x-direction, and

0( ) ( ) /bt I t Iι = , where 0
0

4 17.05 kAem c
I

e
π

µ
= = . Also, ( )x tZ

is the wake function for the cavity. Since the convolution 
integral is the Fourier transform of the product of the 
transforms of the integrand, this equation can be solved by 
using the inverse transform of that product. That is, 
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 ( )
( ) ( ) i txp t

Z F e d
mc

ωω ω ω
∞ −

−∞

∆
= ∫  (12) 

 
where ( )F ω is the Fourier transform of ( )f t , and the 
impedance ( )Z ω is the transform of the wake function ( )tZ . 
Since the wake function is real, the real part of ( )Z ω is 
symmetric, and ( ) ( )Z iZω ω⊥ = − to give a coupling impedance 
with antisymmetric real part that vanishes for zero frequency, 
as is usual for BBU theory [34].  

Although the algorithm fully accounts for axial variation of 
the magnetic field as shown in Fig. 4 and Fig. 5 , radial 
uniformity is assumed, and the radial increase of axial 
magnetic field in the focusing solenoids is ignored, as it is in 
the theory upon which the algorithm is based [33, 34]. This 
approximation has been shown to be justified in our LIAs [35]  

Beam breakup simulated with LAMDA is illustrated by the 
following example. Consider an accelerator consisting of 100 
cells, each with peak transverse impedance of 10 Ohm/cm at 
800 MHz (Fig. 11). For this simulation the BBU was excited 
by a fast rising 2-kA pulse (Fig. 12) injected with a 1-mm 
offset. The rest of the parameters of the simulation are shown 
in Table I. In an LIA with a fast risetime current pulse such as 
shown in Fig. 12, BBU oscillations excited by the beam 
risetime grow to a peak and then decay [36, 34]. The LAMDA 
simulation of this RF motion at the exit of the LIA is shown in 
Fig. 13.The instability is convective; the peak moves back in 
the pulse as it propagates.  

 
Table I. BBU Example Parameters 

 
Parameter Symbol Units Value 
Beam:    
    Kinetic Energy KE  MeV 10 
    Current 

bI  kA 2 
    Pulse Risetime 

rτ  ns 5 

    Pulse Flattop 
flatτ  ns 60 

    Pulse Falltime 
fτ  ns 4 

    Initial Offset 
0x  mm 1 

Induction Cell:    
    Resonant Frequency 

0f  MHz 800 
    Peak Impedance Z⊥  Ω /cm 10 

    Quality Factor Q   4 
Accelerator:    
    Number of Cells N   100 
    Length L   cm 8000 
    Pitch 


 cm 80 

    Uniform Guide Field 
zB  kG 0.4 

 

 
Fig. 11: Real part of transverse impedance that is responsible for the 
BBU instability. LAMDA wakefield model (Section ) using example 
parameters from Table I. 

 
Fig. 12: Current pulse used for example simulation of BBU growth. 
For the example simulation this pulse was initiated with an offset of 
1-mm in the x-direction. 

 
Fig. 13: Beam centroid motion resulting from BBU calculated by 
LAMDA for the example. The beam position in the horizontal plane 
at the LIA exit (z = 8000 cm) is shown. 

Fig. 14  is a plot of the maximum amplitude of the 
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displacement (over the beam pulse length) as a function of 
propagation distance. This displacement converges 
asymptotically to exponential growth predicted by theory [33, 
37].For a large enough number of accelerating cells the 
maximum BBU growth asymptotes to  

 
 [ ] ( )1/2

0 0( ) / ( ) exp mz zξ ξ γ γ= Γ ,  (13) 
where subscript zero denotes initial conditions, and γ   is the 
relativistic mass factor. The maximum growth exponent in this 
equation is 

 ( ) /
4

1
3 10

kA g m
m

kG

I N Z
z

B
⊥ΩΓ =

×
 , (14) 

where kAI  is the beam current in kA, gN  is the number of 

gaps, /mZ⊥Ω  is the transverse impedance in Ω /m, kGB  is the 

guide field in kG, and  indicates averaging over z [33, 34].  

 
Fig. 14: BBU growth in the example LIA. Red Curve: Growth 
simulated by LAMDA. Green Dashed Line: Asymptotic growth from 
Eq.  (13) using parameters from Table I. The delayed  start of strong 
BBU growth characteristic of some magnetic transport designs is 
clearly evident in this simulation . 

 In actuality, the BBU amplitude grows enough that a  
significant portion of the pulse would be scraped off on the 
beam pipe long before the pulse transported to the exit. For 
example, according to Fig. 14, the beam oscillations would 
begin scraping on a 15-cm diameter pipe at about ¾ of the 
distance to the exit, and the pulse would be severely eroded 
before reaching the accelerator exit.  

D. LSP 
 
The Large Scale Plasma (LSP) particle in cell code has been 

in use for several years at DARHT to simulate injectors and 
beam transport through the LIAs. DARHT injector 
simulations have been done in 2D (r, z) and in 3D (x, y, z) for 
representative diode-voltage pulsed waveforms, and these are 
ongoing for the Scorpius injector design. Similar spatial and 
time resolved simulations have been done to explore beam-
target physics which contributes significantly to enlargement 
of the radiographic source spot, and to better understand some 
of the beam diagnostics used at DARHT or planned for 

Scorpius.  
For beam propagation distances more than a few meters we 

use a slice algorithm [38] as a convenient means for avoiding 
the numerical Cerenkov instability, as well as speeding up the 
calculation. The instability is longitudinal, so limiting the 
distribution to a thin slice avoids it, and is an acceptable ansatz 
for a fully relativistic electron beam that has electromagnetic 
interactions collapsed to the transverse dimension. The LSP-
Slice algorithm (LSP-S) has been used in 1D (radius) and 2D 
(x, y). It was used to better understand causes of emittance 
growth in DARHT-II [39, 26, 40, 41, 42], and it has been 
providing assessments of emittance growth for different 
architecture and tune designs for Scorpius [43, 44, 6, 45, 46]. 

The LSP-S algorithm is based on the LSP PIC code [38]. 
Initial electro- and magneto-static solutions are performed 
prior to the first particle push to establish the self-fields of the 
beam, including the diamagnetic field if the beam is rotating. 
After this initialization step, Maxwell’s equations are solved 
on the transverse grid with / 0z∂ ∂ = , and then the particles are 
pushed by the full Lorentz equations. At each time-step the 
grid is assumed to be located at the axial center-of-mass of the 
slice particles ( )z t , which is propagating in the z  direction. 

The initial particle distribution of the slice is either 
extracted from a full , ,x y z  LSP simulation, or modeled as a 
uniform density rigid rotor with additional random transverse 
velocity (emittance). The rotation of the rigid-rotor model is 
consistent with zero canonical angular momentum in the given 
solenoidal magnetic field at the launch position, and the 
random transverse velocity is consistent with the specified 
emittance.  

An example of agreement between LSP-S and XTR 
simulations of matched-beam transport and acceleration 
through DARHT-II is shown in Fig. 15. The slight differences 
that develop is attributed to non-self-similar evolution of the 
beam profile in LSP-S that cannot be accounted for in 
envelope calculations with XTR. 

 
Fig. 15: Comparison of the beam envelope through the DARHT-II 
LIA as calculated by the XTR envelope cade and the LSP slice 
algorithm (LSP-S) in cylindrical (1D) and Cartesian (2D) 
coordinates.. 
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Although the envelope equation only deals with 
axisymmetric beams centered on axis, the concept of beam 
emittance is much more general, and it can be calculated for 
non-axisymmetric distributions in LSP-slice simulations. 
Consider a beam with normalized distribution ( ),x xρ ′  in the 

( ),x x′  plane of phase space. The position of the centroid of 
this distribution is at 

 

                   
( )
( )

,

,

x x x x dxdx

x x x x dxdx

ρ

ρ

′=

′ ′ ′=

∫∫
∫∫

            .   (15) 

 
and the second moments are 
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 ,  (16) 

 
with xx x xσ σ′ ′=  . One can define a 2x2 sigma matrix as 
 

                   xx xx

x x x x

σ σ
σ σ

′

′ ′ ′

 
=  

 
xσ               .       (17) 

 
This matrix is related to the area occupied by the beam in 

the ,x x′  projection of phase space by detxA π= xσ  [47]. In 

beam optics theory the emittance is defined as /rms Aε π= , so 
the rms emittance in the ,x x′  cut through phase space is 

, detx rmsε = xσ . Without loss of generality, one can center the 

beam in ,x x′  space, and then has  
 

 22 2
, 4x rms x x xxε ′ ′= −    , (18) 

 
which is the Lapostolle “4-rms” emittance [18]. Multiplying 
by βγ  gets the normalized emittance. The emittance 
calculated by LSP-S follows ref. [48] and generalizes to

( )1/4detrmsε = σ  [49], where σ  is the 4 4×  matrix formed 
from  4D moments as in Eq. (15) and Eq. (16) permuted 
through all transverse coordinates , , ,x x y y′ ′ . This convention 

for rmsε reduces to Eq. (4) for axisymmetric beams.  
 The emittance calculated by LSP-S for the matched-beam 
transport shown in Fig. 15 is illustrated in Fig. 16. Here, it is 
seen that there is little, if any, emittance growth for a beam 
matched to the magnetic focusing field of a long LIA like 
DARHT-II. On the other hand, a beam injected with 
parameters different than those for which the magnetic tune 
was designed (mismatched) will undergo m=0 “sausage” 
oscillations with a long wavelength approximating the 

betatron wavelength in the moving average magnetic field and 
beam energy. This behavior is illustrated in Fig. 17 for a beam 
injected with an initial radius reduced by 20% from that 
required for matched transport. Betatron oscillations of the 
envelope are clearly evident, and are seen to be accompanied 
by a factor of three growth of emittance.  
 
 

 
Fig. 16: Normalized beam emittance calculated by LSP-S PIC code 
for the matched-beam transport through DARHT-II shown in Fig. 15. 
(Red Curve) Beam envelope radius. (Blue Curve) Normalized 4-rms 
emittance. 

 
Fig. 17: Mismatched beam transport through the DARHT-II LIA. For 
this simulation the initial beam radius was decreased by 20% from 
the initial radius used for matched transport shown in Fig. 16. (Red 
Curve) Matched beam envelope radius from Fig. 16. (Black Curve) 
Mismatched beam envelop radius. (Blue Curve) Normalized 4-rms 
emittance of the mismatched beam. 

 
 
 Fully time-resolved LSP has been largely used to simulate 
beam production in the DARHT diodes, and also to model 
beam-target interactions that affect the radiography source 
spot. For example, Fig. 18 shows a sequence of snapshots of 
the beam produced by a hot dispenser cathode in the DARHT-
II diode that illustrates the absence of beam spill in the 
oversized anode pipe during the long risetime of the pulse. As 
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another example, Fig. 19  is a snapshot from a simulation of 
the beam focused onto a DARHT-I target showing 
acceleration of protons from beam-ionized gas desorbed from 
the target surface. 
 

 
Fig. 18: Sequence of beam images from a DARHT-II diode 
simulation with LSP: (top) early in AK voltage risetime, (middle) late 
in risetime, (bottom) during flattop.  

 

 
Fig. 19: Snapshot of beam interaction with target. Electrons are 
shown in blue, and protons are shown in red [50].  

Plots of the transverse distribution of beam electrons 
obtained from 2D (Cartesian) LSP-S simulations have been 
particularly useful for revealing causes of emittance growth in 
the DARHT accelerators.  For example, Fig. 20 shows the 
edge focusing due to cumulative spherical aberration in the 
DARHT-II injector and main LIA solenoids. Edge focusing 

has been theoretically established as a source of emittance 
growth [51], as well as direct spot size enlargement due to 
final focus aberration. Since spherical aberration is a strong 
function of beam size, we design the tunes for DARHT-II to 
rapidly focus the beam to a small size. Even though the edge 
focusing due to cumulative spherical aberration is noticeable 
in the simulations there is apparently little emittance growth 
from this effect in our simulations of matched beams (Fig. 16). 
However, cumulative edge focusing can account for the 
slightly larger radii at the DARHT-II exit calculated by LSP-S 
compared with XTR. The LSP-S distribution in Fig. 20 clearly 
has and rms radius that is larger than the rms radius of a 
uniform distribution with the same outer edge (XTR).  

 

 
Fig. 20: LSP-Slice particle density in Cartesian coordinates showing 
the cumulative effect of edge focusing by solenoids from the diode to 
~ 4200 cm (see Fig. 15). This plot has 0.5-cm grid-line spacing 

Betatron oscillations of the envelope of a mismatched beam 
can parametrically pump halo growth through the particle-core 
mechanism [52]. This is the cause of the emittance growth 
shown in Fig. 17. This is revealed by comparing the 
development of halo on a mismatched beam with the growth 
of emittance, as illustrated in Fig. 21 

 
Fig. 21: Comparison of emittance growth with development of halo 
on a mismatched beam.  
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III. PHYSICAL MODELS 
 

A. Magnetic Fields 
In general, the external magnetic fields used by these beam 

dynamics codes are developed from either experimental data 
or output from field solvers such as POISSON or PerMag. 
Fields calculated by these solvers have been extensively 
compared with physical measurements and found to be in 
agreement.  

Examples of magnetic field simulations used for TRAK, 
LSP and LAMDA are shown in the next few figures. Fig. 22 
shows the magnetic field in the DARHT-I diode as calculated 
by PerMag [10, 11] for TRAK [7], and Fig. 23 show the field 
in the DARHT-II diode as calculated by PerMag. The field of 
a cell solenoid for an advanced LIA design (ARIA [43]) is 
shown in Fig. 24. 
 
 
 

 
 
 
 
Fig. 22: Magnetic field in DARHT-I diode region as calculated by 
PerMag for TRAK simulations of the injector. The location and 
extent of the explosive-emission velvet cathode is shown in red. The 
purpose of the reversed field bucking coil is to null the canonical 
angular momentum by cancelling the flux linking the cathode. 
Tabular field maps from this or similar simulations can be used as 
input to LSP. Alternatively, LSP can use a simple table of the field on 
axis.  

 

 
Fig. 23: Magnetic field in DARHT-II diode region as calculated by 
PerMag for TRAK simulations of the injector. For DARHT-II, the 
injector simulations include one or more injector cells, which 
included the Metglas cores as shown here. 

 
 

 
Fig. 24: Magnetic field of cell solenoid calculated by PerMag for an 
early design of an advanced radiography accelerator driven by 
conventional pulsed power (ARIA [43]). This simulation included 
both Metglas cores and a ferrite disk used to replicate the RF 
boundary conditions of the DARHT-I cavity. Also shown are the steel 
homogenizing rings used to suppress unwanted multipole fields 
resulting from winding asymmetries. The on-axis field of individual 
solenoids such as this are fit by the model given by Eq. (19) for use 
with XTR or LAMDA, which can also use files created directly from 
such simulations in order to include gross asymmetries. The fields of 
individual solenoids are superimposed to create the field of an LIA 
for input to LSP.    
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The envelope codes require the magnetic field on axis. For 
XTR, solenoidal focusing fields are calculated from a model 
generalized from the field of an ideal single-turn current sheet. 
The XTR solenoid field on axis is modelled by [17] 
 

 

( )

( ) ( )

1/

2

1/ 1/

/ 2
( ) (0)exp( )

/ 2 / 2

/ 2 / 2

pp p

p pp pp p

L R
B z B z

L

L z L z

L z R L z R

α
  +  = − ×  
  

 
− + × + 

    − + + +    

 (19) 

 
Here, L and R are the effective length and radius of the 
solenoid, not necessarily the physical dimensions, and the 
parameter p is exactly 2 for an ideal sheet current. Also, (0)B
is the maximum field given by (0) B magB C I= , where magI is 
current powering the solenoid, and BC is in G/A. The 
parameter α is used to sharpen the profile in order to better 
model pole pieces, if needed. 

The five parameters required as input to XTR are 
determined by fitting to measurements or simulations. The 
solenoid locations are specified in an XTR input file of the 
lattice, and the LIA transport is built up by applying Eq. (19) 
at each location. Dipole steering fields for XTR centroid 
calculations follow the same formulation for axial variation as 
the solenoidal fields 

 
Fig. 25: Comparison of the magnetic field on axis calculated by 
PerMag for the ARIA cell design shown in Fig. 24and the XTR model 
(Eq (19). ) fitted to it by maximum likelihood. For asymmetry as 
slight as shown here, the field calculated by the XTR model is also 
used by LAMDA  

 
 .  

Since LAMDA has the capability for simulating elliptical 
beams, it requires all three field components on axis, which 
are input as files that also include transverse first derivatives 
needed for the equation of motion solver. 

For PIC simulations with LSP, external fields are input as 
functions of z using either full 3D maps or tables of values on 
axis, and are applied at the instantaneous axial center-of-mass 
location. External fields that are azimuthally symmetric, like 
those from solenoids and gaps, are input as tables of on-axis 
values. The off-axis components are calculated up to sixth 
order using a Taylor series expansion that satisfies the 
Maxwell equations [16]; 

 

2 4

3

( , ) ( ) ( ) ( )
4 64

( , ) ( ) ( )
2 16

z

r

r rB r z B z B z B z

r rB r z B z B z

′′ ′′′′= − + −

′ ′′′= − + −





 (20) 

 
where the magnetic field ( )B z  is the field on axis, and the 
prime symbol designates differentiation with respect to the 
axial coordinate, z . Using this expansion, spherical 
aberrations of the accelerator optics are included in the slice 
simulations to the order of expansion. The result of 
accumulating high-order spherical aberration through the 
DAHRT-II LIA is illustrated in Fig. 20.  

Transverse magnetic fields from steering dipoles and cell 
misalignments are input as ,x y  values that uniformly fill the 
solution space, an approximation that is obviously best for a 
beam close to the axis. These dipole fields were obtained from 
XTR, which calculates them on axis from steering dipole 
excitation currents and cell misalignments, which have been 
measured [53, 54]. 

B. Electric Fields 
 

For electric accelerating gap fields XTR simply increments 
the beam energy, and focuses with a thin lens model for the 
Einzel lens of the gap [17]. LAMDA uses a more sophisticated 
thin lens model [31], and also admits files of the field on axis 
[28]. The voltage applied to a gap in LAMDA can be time 
varying, and either read from a file, or calculated from 
available built-in pulse models. Electric fields for LSP are 
provided as full maps, or just the field on axis, from which off 
axis components are derived with a Taylor expansion like Eq. 
(20). 

The files needed for external electric fields in these codes 
are created from the output of field-solver codes like 
POISSON or Estat [10, 11]. Fig. 26 shows the equipotentials 
of the DARHT-I gap electric field calculated by Estat. This 
semi-shielded gap design is also used on Scorpius.  
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Fig. 26: Electric accelerating potentials in the beam pipe as 
calculated by Estat for the DARHT-I cell gaps. 

 

C. Transverse Impedance 
As discussed earlier, the LAMDA BBU algorithm requires 

the transverse impedance of the induction cells as a function 
of frequency to compute BBU growth. These have been 
calculated using AMOS [55, 56] or CST [57], and/or 
measured [57, 35].The data from these calculations and 
measurements has been used to determine the parameters of 
the LAMDA impedance model. 

The wakefield transverse impedance used in LAMDA is 
[58, 59, 60] 

 
( ) ( )
1 1

1 2 / 1 1 2 / 1n
n n n n n

Z Z
iQ iQω ω ω ω⊥ ⊥

 
= − 

+ − + +  
∑ (0.21) 

Because theoretical expressions for transverse impedance 
vary in the phase relation between real and complex 
components depending on author, it is useful to remember that 
the component responsible for BBU coupling is real, satisfies 

( ) ( )Z Zω ω⊥ ⊥− = − (antisymmetric), and vanishes at the origin 
[34]. The real part of a single frequency impedance using this 
model with parameters in Table I is shown in Fig. 11.  
LAMDA has the capability for using different impedances for 
vertical and horizontal polarizations to account for the known 
asymmetries of the DARHT cells. Moreover, the code has 
recently been revised to accommodate up to twelve different 
resonant frequencies, in order to better represent the fine 
structure of the impedance of the Scorpius cells. 

 

IV. CONCLUSIONS 
Beam physics for the new Scorpius radiography accelerator 

has been informed by simulations with several codes, four of 
which have been briefly described here. Although it is entirely 
feasible to do cathode to target (C2T) simulations with a 
single code, such as the LAMDA time-resolved envelope 
code, we have found it advantageous use several codes in 
order to provide a more accurate assessment of beam 
dynamics issues. In short, we use the code most suited to 
solving the problem in question.   

Using this strategy for Scorpius, we have found that, if the 
engineering standards used on the DARHT accelerators are 

adhered to, there should be little difficulty with beam 
dynamics. Based on these simulations and calculations, we do 
not expect disruptive instabilities or excessive emittance 
growth in that novel accelerator, or indeed in any radiography 
accelerator based on DARHT-I.  

Although this report has concentrated on explaining the 
major computational tools used to better understand DARHT 
beam physics and design new radiography LIAs, it should be 
noted that they have been often supplemented by other beam 
dynamics codes, including some written in house. 

ACKNOWLEDGMENTS 
The author is indebted to his colleagues in the J-6 DARHT 

Group at Los Alamos National Laboratory, and in the multi 
laboratory ASD-Scorpius Project, for stimulating discussions 
on these and related topics.  

This work has been supported by the National Nuclear 
Security Agency of the US Department of Energy under 
contract number 89233218CNA000001. 

REFERENCES 
 
[1]  T. H. Martin, A. H. Guenther and M. Kristiansen Editors, 

J. C. Martin on pulsed power, Springer, 1996.  
[2]  C. Ekdahl, "Modern electron accelerators for 

radiography," IEEE Trans. Plasma Sci., vol. 30, no. 1, 
pp. 254-261, 2002.  

[3]  K. Peach and C. Ekdahl, "Particle radiography," Rev. 
Acc. Sci. Tech., vol. 6, pp. 117 - 142, 2013.  

[4]  M. T. Crawford and J. Barraza, "Scorpius: The 
development of a new multi-pulse radiographic system," 
in Proc. 21st IEEE Int. Conf. Pulsed Power, Brighton, 
UK, 2017.  

[5]  M. Crawforrd, "ASD-Scorpius overview," Los Alamos 
National Laboratory Technical Report LA-UR-20-26293, 
2020. 

[6]  C. Ekdahl, "Beam dynamics for the Scorpius Conceptual 
Design Report," Los Alamos National Laboratory 
Technical Report, LA-UR-17-29176 and 
ArXiv:1710.11610, 2017. 

[7]  S. Humphries, "TRAK: Charged particle tracking in 
electric and magnetic fields," in Computational 
Accelerator Physics, R. Ryne, Ed., New York, American 
Institute of Physics, 1994, pp. 597 - 601. 

[8]  S. Humphries and J. Portillo, "Modelling relativistic 
electron beams with finite-element ray-tracing codes," in 
Part. Accell. Conf., NY, USA, 1999.  

[9]  S. Humphies and J. Petillo, "Self-magnetic field 
calculations in ray-tracing codes," Laser Part. Beams, 
vol. 18, pp. 601 - 610, 2000.  

[10]  S. Humphries, Field solutions on computers, CRC Press, 
1997.  

[11]  S. Humphries, "Technical information: TriComp Series," 
Field Precision, LLC, 2013. [Online]. Available: 
www.fieldp.com/technical.html. 



Scorpius Technical Note 
 

14 

[12]  W. D. Stem, Y. J. Chen and J. L. Ellsworth, "Mitigation 
of nonlinear phase space in a space‐charge‐limited 
injector diode," Lawrence Livermore National 
Laboratory Report LLNL‐PROC‐788937 , 2019. 

[13]  T. L. Houck, Y. J. Chen and W. D. Stem, "Cathode 
misalignment simulations for ASD/Scorpius," Lawrence 
Laveremore National Laboratry Report LLNL-TR-
813889, 2020. 

[14]  E. P. Lee and R. K. Cooper, "General envelope equation 
for cylindrically symmetric charged-particle beams," 
Part. Accel., vol. 7, pp. 83-95, 1976.  

[15]  S. Humphries, Charged Particle Beams, New York: 
Wiley, 1990.  

[16]  M. Reiser, Theory and design of charged particle beams, 
New York. NY: Wiley, 1994.  

[17]  P. Allison, "Beam dynamics equations for XTR," Los 
Alamos National Laboratory report, LA-UR-01-6585, 
2001. 

[18]  P. M. Lapostolle, "Possible emittance increase through 
filamentation due to space charge in continuous beams," 
IEEE Trans. Nucl. Sci., vol. 18, pp. 1101 - 1104, 1971.  

[19]  K. L. Brown and et al., "TRANSPORT, a 
computerprogram for designing charged particle beam 
transport systems," CERN Report, CERN 80-04, 1980. 

[20]  P. Allison and et al., "Observation of self-steering effects 
on the ITS 6-MeV LINAC," in Int. Part. Accel. Conf., 
Vancouver, BC, CA, 1997.  

[21]  C. Ekdahl and e. al., "First beam at DARHT-II," in Part. 
Accel. Conf., 2003.  

[22]  C. Ekdahl, E. O. Abeyta, H. Bender, W. Broste, C. 
Carlson, L. Caudill, K. C. D. Chan, Y.-J. Chen, D. 
Dalmas, G. Durtschi, S. Eversole, S. Eylon, W. Fawley, 
D. Frayer, R. Gallegos, J. Harrison, E. Henestroza, M. 
Holzscheiter, T. Houck, T. Hughes, S. Humphries, D. 
Johnson, J. Johnson, K. Jones, E. Jacquez, B. T. 
McCuistian, A. Meidinger, N. Montoya, C. Mostrom, K. 
Moy, K. Nielsen, D. Oro, L. Rodriguez, P. Rodriguez, M. 
Sanchez, M. Schauer, D. Simmons, H. V. Smith, J. 
Studebaker, R. Sturgess, G. Sullivan, C. Swinney, R. 
Temple, C. Y. Tom and S. S. Yu, "Initial electron-beam 
results from the DARHT-II linear induction accelerator," 
IEEE Trans. Plasma Sci., vol. 33, no. 2, pp. 892 - 900, 
2005.  

[23]  C. A. Ekdahl, E. O. Abayta, P. Aragon and et al., "Long-
pulse beam stability experiments on the DARHT-II linear 
induction accelerator," IEEE Trans. Plasma Sci., vol. 34, 
pp. 460-466, 2006.  

[24]  C. Ekdahl, E. O. Abeyta, R. Archuleta, H. Bender, W. 
Broste, C. Carlson, G. Cook, D. Frayer, J. Harrison, T. 
Hughes, J. Johnson, E. Jacquez, B. T. McCuistian, N. 
Montoya, S. Nath, K. Nielsen, C. Rose, M. Schulze, H. 
V. Smith, C. Thoma and C. Y. Tom, "Suppressing beam 
motion in a long-pulse linear induction accelerator," 
Phys. Rev. ST Accel. Beams, vol. 14, no. 12, p. 120401, 
2011.  

[25]  C. Ekdahl and et al., "Beam dynamics in a long-pulse 

linear induction accelerator," J. Korean Phys. Soc., vol. 
59, pp. 3448 - 3452, 2011.  

[26]  C. Ekdahl, "Tuning the DARHT long-pulse linear 
induction accelerator," IEEE Trans. Plasma Sci., vol. 41, 
pp. 2774 - 2780, 2013.  

[27]  C. Ekdahl, "Modeling ion-focused transport of electron 
beams with simple beam-envelope simulations," Sandia 
National Laboratories Report SAND86-0544, 1986. 

[28]  T. P. Hughes, C. B. Mostrom, T. C. Genoni and C. 
Thoma, "LAMDA user's manual and reference," Voss 
Scientific Report, VSL-0707, 2007. 

[29]  Y.-J. Chen, "Corkscrew modes in linear induction 
accelerators," Nucl. Instrum. Methods Phys. Res., vol. 
A292, no. no. 2, pp. 455 - 464, 1990.  

[30]  T. C. Genoni, T. P. Hughes and C. H. Thoma, "Improved 
envelope and centroid equations for high current beams," 
in AIP Conf. Proc., 2002.  

[31]  T. C. Genoni, "Radial focusing of a relativistic electron 
beam in a bipotential electrostatic lens," Phys. Rev. E, 
vol. 50, no. 2, pp. 1496 - 1500, 1994.  

[32]  Y.-J. Chen, "Control of transverse motion caused by 
chromatic aberration and misalignments in linear 
accelerators," Nucl. Instr. Meth. in Phys. Res. A, vol. 398, 
pp. 139 - 146, 1997.  

[33]  V. K. Neil, L. S. Hall and R. K. Cooper, "Further 
theoretical studies of the beam breakup instability," Part. 
Acc., vol. 9, pp. 213-222, 1979.  

[34]  G. J. Caporaso and Y. -J. Chen, "Electron Induction 
Linacs," in Induction Accelerators, K. Takayama and R. 
J. Briggs, Eds., New York, Springer, 2011, pp. 117 - 163. 

[35]  C. Ekdahl and R. McCrady, "Suppresion of beam 
breakup in linear induction accelerators by stagger 
tuning," IEEE Trans. Plasma Sci., vol. 48, no. 10, pp. 
3589 - 3599, 2020.  

[36]  W. K. H. Panofsky and M. Bander, "Asymptotic theory 
of beam-breakup in linear accelerators," Rev. Sci. 
Instrum., vol. 39, pp. 206-212, 1968.  

[37]  G. Caporaso, "The control of beam dynamics in high 
energy induction linacs," in Linear Accelerator Conf. 
(LINAC), 1986.  

[38]  C. Thoma and T. P. Hughes, "A beam-slice algorithm for 
transport of the DARHT-2 accelerator," in Part. Acc. 
Conf., 2007.  

[39]  C. Ekdahl, "Tuning the DARHT Axis-II linear induction 
accelerator focusing," Los Alamos National Laboratory 
Report LA-UR-12-20808, 2012. 

[40]  C. Ekdahl and et al., "Emittance growth in linear 
induction accelerators," in 20th Int. Conf. High Power 
Part. Beams, Washington, DC, USA, 2014.  

[41]  C. Ekdahl and M. Schulze, "Emittance growth in the 
DARHT Axis-II downstream transport," Los Alamos 
National Laboratory Technical Report, LA-UR-15-
22706, 2015. 

[42]  C. Ekdahl and et al., "Emittance growth in the DARHT-II 
linear induction accelerator," IEEE Trans. Plasma Sci., 



Scorpius Technical Note 
 

15 

vol. 45, no. 11, pp. 2962 - 2973, Nov 2017.  
[43]  C. Ekdahl, "Beam dynamics for ARIA," Los Alamos 

National Laboratory Report, LA-UR-14-27454, 2014. 
[44]  C. Ekdahl, "Electron-beam dynamics for an advanced 

flash-radiography accelerator," IEEE Trans. Plasma Sci., 
vol. 43, no. 12, pp. 4123 - 4129, Dec. 2015.  

[45]  C. Ekdahl, "Beam Dynamics for Scorpius with the CDR 
end-to-end tune: I. Transport," Los Alamos National 
Laboratory Technical Report, LA-UR-18-, 2018. 

[46]  C. Ekdahl, "Beam breakup simulations for a solid state 
powered linear induction accelerator," Los Alamos 
National Laboratory Technical Report LA-UR-20-22662, 
Los Alamos, NM, USA, 2020. 

[47]  D. C. Carey, The optics of charged particle beams, New 
York: Harwood Academic, 1987, p. 99 et eq. 

[48]  D. Chernin, "Evolution of rms beam envelopes in 
transport systems with linear x-y coupling," Part. Accel., 
vol. 24, pp. 29 - 44, 1988.  

[49]  T. C. Genoni and T. P. Hughes, "Ion-hose instability in a 
long-pulse linear induction accelerator," Phys. Rev. - ST 
Accel. Beams, vol. 6, no. 4, p. 030401, 2003.  

[50]  M. Weller, Interviewee, Personal communication. 
[Interview]. 26 January 2021. 

[51]  V. Kumar, D. Phadte and C. B. Patidar, "A simple 
formula for emittance growth due to spherical aberration 
in a solenoid lens," in Proc. DAE-BRNS Indian Part. 
Accel. Conf., New Delhi, India, 2011.  

[52]  T. P. Wangler, K. R. Crandall, R. Ryne and T. S. Wang, 
"Particle-core model for transverse dynamics of beam 
halo," Phys. Rev. Special Topics - Acc. Beams, vol. 1, no. 
8, p. 084201, 1998.  

[53]  H. V. Smith and et al., "X and Y offsets of the 18MeV 
DARHT-2 accelerator components inside the hall," Los 
Alamos National Laboratory report LA-UR-09-02040, 
2009. 

[54]  H. V. Smith and et al., "X and Y tilts of the 18MeV 
DARHT-2 accelerator components," Los Alamos 
National Laboratory report LA-UR-09-03768, 2009. 

[55]  J. F. DeFord, "The AMOS (Azimuthal MOde Simulator) 
code," in Proc. 13th Particle Accel. Conf., Chicago, IL, 
USA, 1989.  

[56]  L. Walling, P. Allison, M. Burns and et al., "Transverse 
impedance measurements of prototype cavities for a 
Dual-Axis Radiographic HydroTest (DARHT) facility," 
in Proc. 14th Particle Accel. Conf., San Francisco, CA, 
USA, 1991.  

[57]  S. Kurennoy and R. McCrady, "Coupling Impedances of 
Ferrite-Loaded Cavities: Calculations and 
Measurements," in 11th Int. Part. Accel. Conf., Caen, FR, 
2020.  

[58]  S. A. Heifets and S. A. Kheifets, "Coupling impedance in 
modern accelerators," Rev. Mod. Phys., vol. 63, pp. 631 - 
673, 1991.  

[59]  R. J. Briggs and W. Fawley, "Campaign to minimize the 
transverse impedance of the DARHT-2 induction linac 

cells," Lawence Berkeley National Laboratory Report 
LBNL-56796(Rev-1), 2002. 

[60]  Y. Tang, T. P. Hughes, C. A. Ekdahl and K. C. D. Chan, 
"BBU calculations for beam stability experiments on 
DARHT-2," in European Part. Accel. Conf., Edinburgh, 
Scotland, 2006.  

 
 
 


	I. INTRODUCTION
	II. Simulation Codes
	A. TRAK
	B. XTR
	1) Beam Envelope
	2) Beam Centroid Position

	C. LAMDA
	1) Beam Envelope
	2) Beam Centroid Position
	3) BBU Algorithm

	D. LSP

	III. Physical Models
	A. Magnetic Fields
	B. Electric Fields
	C. Transverse Impedance

	IV. Conclusions
	Acknowledgments
	References

